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ABSTRACT

We present a mathematical model exhibiting the empirically observed

damping rates in elastic systems. The models studied are of the form

(A the televant elasticity operator)

R + Bx + Ax = 0
7,

with B related in various ways to the positive square root, A2 , of A.

Comparison with existing "ad hoc" models is made.
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SIGNIFICANCE AND EXPLANATION

"-* >From empirical studies it is known that the natural modes of vibration

of elastic systems have damping rates which are roughly proportional to the

frequency of vibration. A number of ad hoc models exhibiting behavior of

this type have been proposed in the engineering literature but they are not

true dynamical systems nor are they very useful for numerical computations.

In this papeu" we present a model of the form

x Bx. Ax = 0

with B, A positive, unbounded, self-adjoint operators on a Hilbert space

X, exhibiting the damping behavior just described, which is known as

structural damping. Finite dimensional analogs suitable for computation of

approximate solutions are also noted./,The operator B , which is closely

related to operators of the form yA2, y > 0 , is known as the damping

operator. various types of damping operators are analyzed in Sections 3,

4 of this report.

It is expected that models of this type will permit realistic simula-

tion of various elastic systems wherein damping cannot be ignored.

Ace--:s ion For
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The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.
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A MATHEMATICAL MODEL FOR LINEAR ELASTIC SYSTEM-S
WITH STRUCTURAL DAMPING

G. Chen and D. L. Russell-

1. Semigroup Background. A wide variety of conservative linear elastic systems may

be represented by a second order differential equation

x + Ax = 0 (1.I)

d
where • means , x E X , a Hilbert space with inner product ( , ) and associated

norm II and A is a positive self-adjoint operator on X , ordinarily h uxd<

with domain D(A) dense in X . Under these circumstances A has a non-negative

self-adjoint square root A2 defined on a domain D(A ) c X . Throughout the paper

we will assume that A is bounded below, i.e.,

2(x,Ax) x > a.al x , x e X

for some fixed a > 0. Then the spectrum of A is bounded away from zero and, as a

consequence D(A2 ) D(A); indeed V(Ar) N V(AP ) if r and p are positive numbers

with r < p . Associated with (1.1) is the energy form

=~; .2 "2 21.
E(xx) = (Ix 2 + 11IA X11

which is conserved when x(t) is a solution of (1.1). More on this shortly.

Perhaps the most notable disadvantage assoeiated with conservative systems is t"'t

fact that they do not occur in nature. Always there are dissipative mechanisms acting

within the system causing the energy to decrease during any positive time interval.

The most widely accepted mathematical model eXhibiting such dissipative behavior taki:

the form

+ Ex + Ax =0(.

where B is again a positive self-adjoint operator on X with domain V(B) i.. i

V X . If x(t) is a solution of (1.2), twice strongly continuously differentiazh lb
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x(t) D(A), x(t) D 0(B), then
d d * t),(At))
d E(x(t),t(t ) (Actx(t),A x(t))] = (x(t),x(t) + Ax(t))

= -(X(t),BX(t)) < 0

For the moment this is all formal since we have not discussed the existence of, or the

nature of, solutions of (1.3).

Letting

z 2 Zl 22 : X

the system (1.3) is formally equivalent, under the transformation z x, z to

z = AOz , (1.4)

where

We digress, briefly, to consider the case where A is only non-negative. In this

case we may write

X = + 0 X0

xs X x O ,

and, for x E D(A)

A +4.X 
+ +

Here X0  is the null space of A . We will assume that A+  is bounded below. Then

(1.5) is the same as

00

40 0 "0 z2

ZI  0+ 4, z4

= , (1.7)

z2 z2

Ssince (1.6) is almost trivial, only (1.7) need be satisfied. As a consequence, we may

as well assume that A is bounded away from zero in (1.1), (1.5) when proving theorems

n ut these systems. The space X 0  is usually finite dimensional, encompassing free

i rigid body notion.I l~i -2-



With A bounded away from zero A , A are non-negative bounded self-adjoint

operators on X . The transformation

z =Aw (1.8)

2 2
Z =W

carries (1.5) into

w,1)w 0 A? 11w° 
= 2 - L0w (1.9)

A 0 j

It should be noted that the transformation (1.8) maps D(A
2

) 0 X onto W X * X.

The energy from (1.2) maps into

11 w12 (11 w 1 (wl 2 + 11w2 12 (1.10)

Applying the inequality

i w 2 > X
2

(llwl,
1 2 

+ 1w
2

1
2

), real

1 2 '2
which is easily verified for w ,w D(A ), we see that

IIR(,C0)I C , A F 0 and real.
0

Then the Hille-Yoshida theorem ([2]) applies to give

Theorem 1.1. The operator

0 20
=
.- A

7  
0)

generates a strongly continuous group of bounded operators S (t) on W = x X,

the solutions

w0
w(t) = S 0 (t)w0 , w0 =

w 
0

being strongl7 continuously differentiable and satisfying (1.9) in X for all t

just in case

1 w2 D(A"
)

w0 ,

-3-



For B positive and seif-adjoint in (1.3) the first order system comparable to

(1.9) is

= Az , (1.i1.)

ABz =B z '31 2  
. (1.12)

Treating first the case where A is strictly positive, A -2 is bounded and the trans-

formation (1.8) yields

(11 0 K ' .1~}EB (.
2  _ 2 . - w x~ z

Unless B is bounded it cannot be expected that £B  will generate a group on W ; a

semigroup is all we get. For A > 0 , our assumptions imply that )I + B is self-

adjoint and non-negative. We compute
7.

1' 1 2A I I + w2, 2 = )21jwl) 2 + IIA~wI X
A )2)2 .B 

2 l 2 2 '

+ ((I + B)w 2 , (Xi + B)W 2 + l]_w2I + (A wBw + ( w ,Awl)

Since

2 2 2 2 2 2
((I + B)w , (Xl + B)w )X = X w 21 X + 2X(w ,Bw2)X

2 2 2 2 2 2 2
+ (>ww) + 11 wi 11 X ' X >0

and since 2

(IA'wl)12 + IIBw211 2 + (Al'Bw2) + (Bw2'AIw )x IIA w 1 W2 X

we are able to conclude that

XI -A2 112 A2 (11w11 1w21

A -I+B1 w2  2 + lww2 2 \ 0

as defined on the domain

S 'O(A w2  V(A D(

12For such w =(w , w ), then,

& IiR(o'x )II < 0
B -

The Hille-Yoshida theorem applies if the domain of I is dense in 11 and I iF
B

clo,.'d. For the first of these requirements we assume

V(A') s(B) is dense in X

-4-



1 2 1 2
For the second we observe that if f(wk,wk)} converges in W and £B(wk'wk)

converges in W , the latter implies that

(fAw2 converges inX, (2.16)

(A wl + Bw 2 l converges in X (1.17)k k

From (1.16) together with the fact that Ah, being self-adjoint is closed, we conclude

that W 2limW 2 C D(A). It is not, however, easy to conclude from (1.17) that either

41 2{A w I or {Bw } is convergent. Indeed, take the case where B = A. Using a coordi-rk k

nate system based on an orthonormal system for A , we may represent

A = B - diag(Xl,X 2 1 3 .o), A (X

and vectors x e X may be represented by their expansion coefficients:

X = (xlx 2 X3 ,' °), . p I xkI
k=1

Assuming that lim - +X , a sequence {2C} with positive elements may be found such
k-

that

~ IXI Y x ~ ~ k x k - -
k IN k- k k-1

Assuming no Ak = 0 , let

2 x A
k 1 122 Kk

wk 1 (-xI , -x , •

Then w },{w } arec convergent, {Aw + Aw} {0} is con-

vergent but neither

{A wkl = Ax

nor
{Aw 2 {(Xzx X4x ,... X,0,...)1

2 1 l 2 2  kk

are convergent. Thus the operator £ in not closed on the domain (1.15), which in
A

this case is
1 (-)w 2

W E 2 E V(A5 ) n D(A) = D(A). (.

The operator SA  is closable because it can be shown to have a complete set of eigen-

vectors in W - X X and from that, via the Galerkin method [6), it can be sh' n

tn there is a strongly continuous semigroup, A (t), of bounded operators which



satisfy dA(t)w = £AS (t)w whenever w = w2 satisfies (1.18). Then SA(t)
dt A A A I 2 I A~

has a closed generator, which we will still call £A , defined by

LAw = lim 1(SA(t) - I)w
A t t At 0

for all w such that this limit exists. Denoting this set of w by D(A ), £A will

be closed. In general this domain is larger than the one described in (1.18).

Despite this eventually positive outcome for the case B = A , the example shows

that it will not be easy to characterize all instances wherein £B is a closed

operator or, at least, has a closed extension.

At least two procedures come to mind. For some applications it is reasonable to

assume that B is A 2-bounded, i.e., the domain of B includes the domain of A 2 and

there is a positive number M such that

1 BxiI < M(iIX11 + iA 2xI) , x c D(A 2 ). (1.19)

In such an event the domain of LB is precisely {(w ,w2 )w E V(A w2  E

(1.16) implies that {Bwk } converges in X and that, with (1.17) implies that {A2w }

converges in X . Then X is closed as defined on (1.15).
B

A second possibility is to show that XB is maximal dissipative or that it has a

maximal dissipative extension. The theory of Phillips [7] then applies to show that

the maximally extended dissipative operator generates a semigroup S B(t) and is a

closed operator. This is essentially what we have already carried out for the case

B A.

-6-



2. Structural Damping and Holomorphic Semigroups: Implications

The basic property of structural damping, which is said to be consistent with

empirical studies (3], [9]) is that the amplitudes of the normal modes of vibration

are attenuated at rates which are proportional to the oscillation frequencies. We will

see that this is an important property, implying as it does that many distributed

systems act in a manner more like finite dimensional systems than would otherwise be

the case.

The subject of energy dissipation in elastic systems has been extensively studied

in the literature. (See, e.g. [ 3].) Nevertheless mathematical modelling appears

to be rather primitive and ad hoc. in (3] and [4] the representation

+ (1 ±6i)Ax - 0 (2.1)

is used. Assuming that A has discrete spectrum 0 < X1 < X2 < ... < Xn < Xn+l < ...

with corresponding orthonormal eigenvectors i,2,3,.. , (2.1) has solutions

akt
xk(t) e Ok

if and only if
2

a + (l ±6i) 0k= 0

/ Spurious
Retained % a or
values extraneous

of -k values of

Figure 1

Spurious spectrum, x = (1 A i)Ax

giving

k= (-(k 6 i)k .

-7-



Since

-(1 -6i)A = 2 62 e±
i (tan

1 6 + 70

where = we have
k + k41-+2 e ±i *

+ _ , = (tan-6 + 7T),

four values for each integer k . These lie in an "X" pattern in the complex plane,

symmetric with respect to both the real and imaginary axes (Figure 1). In engineering

use, those lying in the right half plane are rejected as extraneous, those in the left

half plane are retained. This does not correspond to choosing one to the signs + or

- in (2.1), however.

Equation (2.1) has numerous disadvantages. First of all, it is not properly an

equation and there is no associated strongly continuous semigroup. Secondly, if A

denotes a positive symmetric matrix representing a discretization of the elastic oper-

ator A , the equation
x+U±w =0, En

is still not ccnputationally useful for generating approximate solutions. There is

the obvious problem of introducing complex numbers into an equation which is supposed

to represent a real system. Further, the "extraneous" solutions will grow and eclipse

the decaying solutions which are actually desired. This remains true for the real

fourth order equation

(iv) +. 2AX + (U + 62 )A2' = 0 (2.2)

which has the same solutions as (2.1).

The form of (2.2) is, nevertheless, suggestive of the prototype model for this

paper which is

x + 2PA 2  
+ Ax - 0 , (2.3)

where A denotes the positive self-adjoint square root of A . For (2.3), trial

solutions

xk(t) = enk 0k

lead to the equation
2 =0
CYk + 2pakX + Ak : 0

+ 
2.. .k -k

........... .. ........-.-.--.-.-.......



or /2
2 p0k / P, 

4
Xi- k

ak = 2 = P p w e tan X-7 1 P (2.4)

2
if P < 1 , which we would normally anticipate for lightly damped structures. In

(2.4) we have exponents forming a pattern ">" in the complex plane, a pattern quite

similar to the retained ak  of the earlier model (2.1). (See Figure 2.)

)rigure 2

Spectrum for the system (2.3)

The system (2.3) has many advantagep in addition to not producing extraneous

spectral values. It is a bona fide dynamical system; we will see in the next two

sections that this system corresponds to a system (1.13) with

B 2fpA 2 A 4 -2PA2

such that t generates a stronqly continuous (in fact, holomorphic) semigroup in

2:pA

W = X 9 X, and that this remains true for the operator t£ if B "resembles" 2-A'

appropriately.

The eigenvectors of Z also have properties which are desirable from the
2pA'2

analytical point of view. If we denote the normalized eigenvectors of A (equiva-

1. k

lently A") in X by 0 k k 1 ,2,3,---, then the normalized eigenvector of the

antihermitian operator

-9-
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0 { -A 2  
(2.5)

L-A 01
corresponding to ik , i, are seen to be

k = i k k | k  , k =,2,.-, (2.6)

and it is easy to verify from the corresponding properties of the Ok in X that the

vectors (2.6) form an orthonormal basis for W = X 0 X - which would also follow from

the fact that the operator (2.5) is antihermitian. The normalized eigenvectors of

I , corresponding to the eigenvalues Wk e  are
2pA

¢k ¢k

- r V2
?k 4 Yik iY k =1,2,.-.,

e ke k

2 "2
which may be seen to be related to the vectors (2.6 ) by the transformation

.,(_) = [ I 0 1 O (+

k cos YI sin' T1

in W = X 0 X. Since this transformation is bounded and boundedly invertible for

T (+)
-- < , which corresponds to 0 < p < 1 , we conclude that the Y k  form a

uniform, or Riesz, basis ([1], [8]) for W X ( X, that is, given w W , w may be

expanded in the convergent series

w (w + Y + w - T
k~ k k kk=l

and there are positive constants c, C, such that

c-2 I2 (1w, + _w1
2 ) < C2 11wI2•

W k=l k k

Among other things, this implies that C , is similar to a normal operator - which
2,A'

is also easily seen from the operator identity

_______ --



-2 1 1I A pI I e A 0
(2.7)

e, -iA' iS -iy
' 2.Ae.I e -e

[I 1k 2 j A" - 2A /2"

These observations lead to a number of significant consequences. Let

b= [2 ] c= {2
be vectors in X . The transfer function for the forced system

w= = 0 2A w + 2 2 bf (2.8)

with output

-(t) = f = (w(t),C)w
( t) c211

is the function

R(>) = X[I - 22A,]- b,c I

RP x C20AJ J~ W

This function is invariant under any transformation

W = Ty

in particular for (cf. (2.7))

T=T = (2.9)
iY -iT

e e

in the sense that

R(/) = ((MI - T- T)- T- b,T*C) ,
2nA N

and in the case (2.9) this gives

f(f) -eAe-i-l - 1 ", 0 - W
14/) (XIe-i'y; lJ b,T~C jw

From the fact that A , and hence A , is positive, we see that if larg(A) -Y1

"A( ) + are bounded away from zero, IR() -L - for some positive K

-11-



In particular, as long as 0 < p < 1, we see that the frequency response function R(i.)

has the property

IR(iw)i < K (2.1.)-
This is emphatically not true for the undamped operator L0 , or for the operator

X£i , y > 0 , corresponding to viscous damping. In those cases all that can be asserted

is that lR(iW)j is bounded. The inequality

S BI - £B) -1I< M , larg Xl < Y - c, (2.11)III

which follows from the above considerations for B = 2pA , is the fundamental hypothesis

required in order that £B  should generate a holomorphic semigroup in W . An in-

equality of the form (2.10) easily follows from (2.11). Since systems whose frequency

response functions satisy (2.10) may be modelled effectively by finite dimensional

systems - as will be shown elsewhere - structural damping and the closely allied property

of holomorphic semigroup generation have significant practical modelling implications.

To conclude this section we remark that, although A being a differential operator

does not at all ensure that Ak is such, this does not impede the usefulness of (2.3)

in computations. If one approximates A by a positive, self-adjoint finite dimen-

sional matrix A , the positive self-adjoint square root matrix A may be calculated

readily and the finite dimensional system

+ 2piA + 0

is then available for computational use.

-12-



3. A Sufficient Condition for General Damping Operators B

We wish now to consider the general second order equation

+ BX + AX = 0 (3.1)

with, as we have seen, the equivalent first order representationw l [ 0 A' w l(32
= = _--IJw £Bw .(3.2)

w 2  -A" _B W2

Following the discussion of the previous section, our objective is to determine condi-
tions on B sufficient in order that ZB should generate a holomorphic semigroup in

W - and we want to do this without making overly restrictive assumptions on B , such

as B = YA , B = yA, or, for that matter, B a yf(A) where f(M) is an analytic

function of A in a region containing the positive real X axis with f() > 0

for A > 0 . Nevertheless, in the present section, we are concerned with operators

B which are closely related to A . Specifically, we will assume at the outset that

a is A0-bounded so that, as noted in Section 1, t B is closed.

From [5] we know that a sufficient condition for CB to generate a holomorphic

semigroup is the following: that X B should be closed and that there should exist

a positive number il, 0 < e1 < 1, such that

M
IIR(X,B )II - II (AI - - < -£,M = M , (3.3)

for JlI sufficiently large in any sector

IargA)i <Z + e, 0 < e (3.4)

of the complex A plane. When this is true the semigroup SB(t) generated by CB

is defined for t in the dual sector

{01 u {tliarg ti < e

and for each w c W , SB(t)w is a holomorphic (i.e., differentiable with respect to

II II ) vector valued function in {tilti N O, arq ti < elj.

-13-



We have already presented, in Section 2, a discussion of the significance of

the holomorplicity of S (t). From that work we know that solutions w(t) = S B(t)w

corresponding to holomorphic semigroups S B(t) exhibit a number of properties

characteristic of structural damping.

Theorem 3.1 Let B , positive and self-adjoint, be A21 bounded and, in addition,

let B satisfy

B = 2 A ! + C A (3.5)
P

where C is a bounded operator. Then there exists a positive number m(p) (depending

only on p and A) such that whenever

id1 < m(P)

generates a holomorphic semigroup on W = X 0 X

Proof We begin by noting that R(A, B ) can be computed explicitly. Representing

XI - :W WX X X 9 X in operator matrix form as

AII2 -A 2

Ai -£B = ~ A

B A AI+B

it must be true that

(XI - £)(Ai - £B) = I. (3.6)

Representing the resolvent in matrix form also:0I1I - £)-1 =
B

(3.6) is seen to be equivalent to

XW - AY= I , X- AZ =0 (3.7)

AW + UI + B)Y = 0 , AX + (Al + B)Z = I (3.8)

From (3.7) we have, immediately,

W - (I + A 2 Y), X = A''Z. (3.9)

Substituting (3.9) into (3.8) and multiplying the result by X , we have
r 2  2I

A + AY + (,' + !B)Y 0

AL + (,2 I + 'B)Z = ,'I

These give

y (21 + <B + A)-'A", Z = . + -B + A)-'. (3.10)

-14-



Then, returning to (3.9),

(I + A'Y) (I + AB + A) A),

-. _ '2 1 (3.11)
X = AZ = A (X I + XB + A)-

Combining these results, and letting

P(,A,B) = X,1 + XB + A

we have

(- A P(X,A,B) A 2) A'P(X,A,B)R(i -l ' l (3.12)
B -P(,A,B) A ? P(X,A,B)

-  J
Since I ,RPC )IJ = IIIR,C B)II, all we need to show is that there is an M = M (6)

such that

/,R(>,JB)II < M (3.13)

for H sufficiently large, larg XI I z+ 6. Since A,B are self-adjoint
-2~*

P(X,A,B) = P(,A,B)

(P(,A,B) A ) = A2P(X,A,B)

and it is enough to show that the three operators

'~- 2 ! -1 2 -1 (.A P(X,A,B) A , XA2P(X,A,B) , X P(X,A,B) (3.14)

are all bounded in the indicated region.

Let be the positive number referred to in the theorem. We have

2 2
P(,A,B) = A I + AB + A - A + 20XA + A + X(B-2PA

4 ).

By analogy with the quadratic formula, we set

2 + 2--A '2 + A = (GI + [P + (P2 _ 101A (I + [p - (P _ )]A
(3.15)

(- Q+(, ,A )Q -(X, ,,A 
(.15

Then

P(-,A,B)
-  

= I + 2 - 1) IA ) 1i +

+ [. +(,2 - "1 IA") (B - 2rA') (XI + (0p 2 )]A') ] (XI + (p +(P 1) 2I]A 
1

A ( ,. .? )- [I + Q ( ,.,,A 2
) )(BA -  - 2.I)AI Q2 (X,,A ) I Q+ (X,P,A k 1 (3.16)

[:-w suljose we can establish that the operators

S(',;,A ) - I , A (?,,A) (3.17)

arc uniform17 bounded for iarg' + ;. Then, using this in (3.16) we see that the

o-,rrators (3.14) are all bounded just in case

-15-



[I + Q+(A,p,A4) "I A(BA " - 2p)A 1 Q (X,P,A)-1] -1

is bounded. Again using the boundedness of the operators (3.17), this will be true if

11 BA" - 2pIII < m(p),

where m(p) is such that

m(p)IIQ+(A,p,A IAIIAQ '(X,P,A ) II < y < 1 (3.18)

uniformly for sufficiently large AI in the sector JargAl < + 0.

Letting E(fi) be the spectral measure associated with the positive self-adjoint

operator A1 , the operators (3.18) have the representations

XQ-(X,P,A )1 f ) X/(X + ±(2 - 1)4I u)dE(u)

2 4
AIQ+(X,,A )l P I /IA + (±(2 - 1 ) ]UdE

aI

and we have the desired result if the functions

+ Ap-IA,p, ) = "2

A - ( 0 
2  -

q +IX,p,p)

aA + [0 -+o2 - 1)1 112

are uniformly bounded for V E A), AIj sufficiently large in the sector 1argX, _

-+ .

We consider first the case where p > 1 . Then (p2  1 i) is positive and

min(p + - 1), p - - 11} - (pZ . 112 _= r- > 0.
- (P P }(

max(p + (p 2 _110, p - ( 2 - 1) L2 P + (p 
2 _10. r+ >

In this case we can take 0 to be any positive number < r/2 . The modulus of

_++
p(AX,,) is then the ratio of the distance from A to the origin to the distance

from A to one of the points -wr+ or -ir . Let T be the angle between and

the negative real axis. (See Figure 3.) Clearly

Y >j1- > 0.

Then, by the law of cosines

JA + p r-±l2 - IA2 + I r1 2 - 2 cos A iAlwr-1

so that

-16-
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Figure 3

so that

( JAI.. ]2 + (-~ . L .J l. 319
:+J_ 1 - 2 cos IF ti 1 (319

JA + Pyl-I I +1+,- -oo~ l+r I Ix + -o

Now it is clear geometrically that

1I==1L csc(-- 8) - sec e (3.20)IA .r-l - 2

so that

Iq1lA,p,v)J l t-- ce (3.21)

Then, using (3.20) in (3.19)

( J1 - 2 cos Tec 6 1 0

A + or~l A + ur* -

which implies that

os T sec e +-/os 2 sec2e + 1 . (3.22);{ IA + or-+

If P < 1 the argument is not very different. In this case the numbers

-piv - r - are conjugate complex numbers and -or lies on one of

the rays

larg Al - tan1  P + sin-lp

in the left half plane as shown in Figure 4, where we have set

81 - sin p.

-17-
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-L~r

kY

-Lr+

Figure 4

The symmetry of the situation allows us to consider A in the upper half of this

sector only. We let T be the angle between A and the ray arg A = -2 + 81 . Then
2

T > e1- e >o .

Using the law of cosines in precisely the same way as before we have (3.20) modified to

CSC( - e) (3.23)

JA + pr -+

and (3.22) is replaced by

- < cos T csc(81 - e) + /Cos 
2 csc2(6 1-) + 1. (3.24)IA+ ur+- -

This completes the proof.
The result shows, in effect, that the set of operators B for which £B generates

a holomorphic semigroup includes a neighborhood, relative to the operator topology

II Bi1 = IIBA7 11 about B = 2 A' for any positive number p . Inspection of the caseA

C cl shows very quickly that this is the best result one can obtain in terms of

II !I , However, the result is not satisfactory for many purposes. What we would

A2

eventually like to be able to prove is that if B is a positive self-adjoint operator

such that

P1A '2 < B , p2 A 2 , x D (A"), (3.25)

or else (not, in general, equivalent)

• ... -18-



2 2 2
0pA - < PA 0(A), (3.26)

then LB generates a holomorphic semigroup on W = X 9 X.

We can offer a partial result in this direction in the form of the following

corollary to Theorem 3.1.

Corollary 3.2 For each p > 0 there exists E(p) such that if B is a positive

self-adjoint operator satisfying

[2p - e(p)JA < B < (2p + e(p)]A (3.27)

then XB  generates a holomorphic semigroup on W - X OX.

Proof Multiplying (3.27) on the right and on the left by A we have

[2p - c(p)]I < A7IA " < [2p + c(P)I

Then

-C(P)I < A73A'P - 2p0 < -(P)I, I

and since A- 4 B A-4 is self-adjoint, we conclude that

IA'B A4 
- 2PIII < e(O) (3.28)

+ - - -l

Now the term Q (A,p,A ) '(B - 2pA )Q (X,P,A 1 which occurs in (3.16) can be re-

written as

Q+(X,p,A ) X2A'(A 4 B A 2pI)A4AQ (,P,A11

The proof then proceeds as before except that it is now necessary to establish the

boundedness of the operators

Q (X,,,A )- V, , AV Q (A,p,,A -

Going over to the spectral analysis again, it is sufficient to establish the uniform

boundedness of the functions

- +2 4
X, + 1p(p - 1) I

for u e a(A), IN sufficiently large in the sector jarg I < + e. out since

S±(X,,)j2 Ip±(,olJ q-(,,u-

This follows imediately from the work already done in the proof of Theorem 3.1 and

Corollary 3.2 follows.

I 9
-19-



It is possible to prove Theorem 3.1 in a slightly different way by first carrying

out the proof for the case

B -=2 A0P

and then applying a result in [5] on perturbation of holomorphic semigroups. One

needs only to observe that, with

0 A
A -A -2PA (3.29)

the operator

0 0

~= (0 CA1 J
is A-bounded with A norm tending to 0 as 1lli tends to zero. The cited result

in 15] then shows that A + C generates a holomorphic semigroup. The proof that

(3.29) generates a holomorphic semigroup is almost immediate when one notes that,

as pointed out in Section 2, A is similar to a normal operator.

-20-



4. A Result for Strong Structural Damping

We have noted our conjecture that £B in (1.13) should generate a holomorphic

semigroup if B is self-adjoint and positive and (3.25) or (3.26) is valid. Though

unable to obtain a result of this strength at the moment we can present a theorem

valid under hypotheses significantly different from those made in Theorem 3.1.

Assuming that

p 2lx1l 2  < IIBA xIl < p 2 11X12 (4.1)

equivalently,

2 2PlA <- <P 2A, P2  P>p1 0O. (4.2)

The theorem applies, basically, when p, is large and P2  is not "too large" in

relation to p1 . We will call this the case of "strong" structural dumping.

Let us note, first of all, that (4.1), (4.2) imply that IIBxII < k 1IA xli for some

k1  not greater than p2 " We will see later that (4.1) implies

2 ixI 2 < IA71x~ 2 2 (43
1 11 xl <P21 d 4 3

so that IIA'7 A- A2xII < k2 xI with k2 not greater than p2 . We let k =

sup(k k2 ). Then
i Exil < IiA 1 , IA 'S A 'y I < x ," -y i. (4 .4 )

Theorem 4.1 Let B be positive Ld self-adjoint, let A be as in Section 1. Let

BA -4 satisfy (4.1) and let the ran e of BA " be X - so that BA- 
2 is bounded and

boundedlX invertible. Then the gperator LB (cf. (1.13)) generates a holomorphic

semiBroup S (t) for t in the interior of the sector

= t E Cliarg tj < tan- O),

for some > 0 ,provided that-for some c, 0 < kE <

(i) l-(- + 2)-- > 04E 2

P2

(ii-K + 2) -L I + +- t92 > )]
P1  2

-21-



For future reference we observe that (4.4) implies that for some k < 2k

I(Ax,Bx) - (Bx,AX)l < klIA 2XIIIAxII, x E D(A) (4.5)

If B:V(A
3
/
2
)-V(A), this can be replaced by the commutator condition

(x, (AB-BA)x) I < k1lA~x11axllXI, x D(A
3 ' )

. (4.6)

The proof of Theorem 4.1 involves, as before in Theorem 3.1, showing that the

three operators

1 (AA)-1 -l 2 l 47
A p(X,A,B) A

2
, A'P(A,A,B) 

-  A 2(A,A,B)
-
1 (4.7)

are uniformly bounded in the sector
(
_
a n- 1 + 1) = { larg < + tan-10. (4.8)

To this end, we establish

Lema 4.2. Given (i) - (iii), (4.5), there exist positive constants clc 2 such that

11P(AAB) x 2 > c 
4lxil 2 + c2 lHAX1 2, x , D(A), .(tan"- + ) (4.9)

if 0 is sufficiently small.

Proof Let A = X in. Then for x f D(A)

(P(A,A,B)x, P(A,A,B)x) = ((A 2I + XB + A)X, ( 2I + AB + A)x)

= IA1 4  1x112  + I1i 2  
11Bxjj2 + 11Axl 2  

4 2 JI12(x,Bx) + 2 ( 2  
- )2 )(x,Ax) (4.10)

+ &[(Bx,Ax) + Ax,Bx)] + if[-(AX,BX) + (Bx,Ax)] - T1 + T2 + T3 + T4 + T5 +T 6 + T7

We divide the discussion into the treatment of two cases.

Case I: Re A = > 0. In this case, T, T 2 , T3 , T4 are all non-negative. For T5

we have, using (4.2) twice,

2(& - n 
2
) (X,Ax) >__ - 2- - Bxll

2

2 2l

while for T , with c such that 0 < kf- < 1
2 2 2

[(Bx,Ax) + (Ax,Bx)] < 2 1lAxIIIIBxll < - - f1x1 l + (1 - kc)IlAxll (4.11)

and for T7, with : > 0 , using (4.5),

Tin[(AX, Bx) + (Bx, AX) k nltlA'Xl 11 Ax11< 11 2)Axl + kjL:lAxl 2

k 2 2 2
T) IIExll 2  + kt lAxil (4.12)

-22-



Combining these, we see that (4.10) satisfies

[Ti> Ti+ -_ _ L_ I It-kjI2
7 4 P2 2 2

_2 k I 2

- (1 - kc) 1lAxl 2 - k- n
2 11 BxiI - kZ IIAxIl 2

_ X 14 It x(2 +2 1 V 2 2 k2 2 } Bx112

P2 02 4 P 1
7 2

+ ( - ) AXII (4.13)

Let e be such that 0 < kE < I and (i), (ii) are satisfied. Clearly, if 0 < Z <

2and t is sufficiently close to c , the coefficient of JIBxI is nonnegative.

Case II: Re X = < 0 , A E I (tan- + - ), i.e., - < OInI. In this case only

T1 , T2 , T3  are obviously non-negative. We have, for 0 < Z < £ < 1 , 0 < kE < 1

IT41 = 21EI 2 (X,BX) < (1- 114 ,2 1
2

2 2 2
2 ) 2 2xl

TS 2> 22 22 11 BxjI

P2  p1

T6  < lx2 + (1 - kc) IIAxI 2  (cf. (4.11))

k 2 2 2
IT7 1 < 2 n IrBxI + ki IAx 2

. (cf. 4.12))

Hence
7 3 4 I 2 2
ST i  T.- (1- )1 I4 - 2-- l 2

i=l1 =

2 T22 11 xl 2 IBxII 2  x2 _ kr
2  lnxl - k lAxl12

= IA ,4 11 A t2 + [ 1(1 2 k 2 )n 2  
+  (1 1 + _L _ I k )& 2 ] 11B xA 2

2 2l 1-ke

4 2 O p 2 1 2 1 2 2E

Pl P12

+ k(E - Z)lIAxl
2

> IA 1
4 1,xlI

2 + f(1 2- k )  1 - (1 + 2 )2}2 11Bd 2
2 2 ~1 - C 1 - k-;)) }P I 4tPl1 P2

C. A j4 11 A 2 + - ) tAXII 2 (4.14)
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if A e J(tan-l@ + 2 , () - (iii) hold, 0 < E < E and 9 is sufficiently close to
2'

Combining (4.13), (4.14), taking c, = min(l,c) = c, c2 = k(c - f), we see that

(4.9) holds and the proof of Lemma 4.2 is complete.

Proof of Theorem 4.1 As we noted before Lemma 4.2, we must establish that the operators

(4.7) are uniformly bounded in the sector (4.8). For the third operator in (4.7), the

result is now immediate.

11X2 P(XA,B)xll 2 = IIP(X,A,B)(-2 x) 1 2 > c lA141 A-2,dl + c 1A(- 2x)II2 > c l1xiA (4.15)

To treat the first operator, we note that with the transformation
1

which may be seen to leave any sector (4.8) invariant, and with

A2 BA2, A1 =A ,

we have

A2 P(A,A,B)A = A2 P(A,A 1 ,B1 ). (4.16)

We verify that P(;,A1 ,BI) satisfies the hypotheses of Lermma 4.2. From the second

inequality in (4.4) it follows that
- -<p A B1 2< 2112 (.711A Ell = 11 (BA )1 = l1BA < -2 < p 2 11 A (4.17)

The first inequality gives, in the same way

B-1AI 110*!-lID B-All =hI (A -)*I=IIA' - -=O 2iABii

so that, with y = A 2 Bx

-1 2 1 2 2> 2 2IB A yll < _2 jj yl 11 A x2 - (4.18)
P1

Combining (4.17) and (4.18),
2 2 - 2 2 2

lxiix~ < 11A 2Bxll <p 21 l (4.19)1 - 2

Since A B A BAA -B A we see that B A1  is bounded

on the domain of A and, since that domain is dense in X , BIA_ extends to a

bounded operator on X , which we still call RIA1 . Then we note that, just as we

obtained (4.5), we have, readjusting k in (4.5) if necessary,

I(AlX,BlX) - (B X,Alx) < MIAXI 11IA xil (4.20)

Proceeding as in Lemma 4.2, we see that if the inequalities (i)-(iii) are satisfied

we have
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IIP(C,A I BI )xiI 2  - 1 1 1411 A 2 2 c11A i 2
2 II ,dI 2 c~I 1X

so that

IA P(4,A11 B )xlI 2 >.c llxi 2 (recall X = )

But, as we have noted in (4.16), this is the same as

i1 (A P(X,A,B)A >)xJI > c l 12

and we conclude that the first operator in (4.7) is bounded uniformly in the sector

[(tan-')° + )

+2

Now consider the second operator in (4.7). We have seen (cf. (4.9)) that

11P(,A,B)x1A2 > 11 X 141 , 2 + c 2 11AxII 2  (4.21)

Let us note that the hypothesis that A is self-adjoint and positive implies the same

for A2. Then it is easy to establish that for X C 1(tan- 1 + L) the range of
2

Al + A is the whole space X . With

x - (A74 + ,-li)y

(4.21) gives
--l4 - -. 2 - -

IIP(,,A,B) (A + A I)yll > CI 1411 (A + X X)yli + c 2 IA(A 2 + -lI)y1 2

so that

ll 1P(X,A,B)A
2 "(A + A2 )yll > c 1 1AI21i(I + XA ) N112 + c2 11 (A 2 + X-1A)yII 2

> 2,l Yll 2 + a2 U2Ay 11 2  > II lI + A )yll 2 
, > 0 , (4.22)

provided we can establish that there are positive numbers cic 2 such that for

Aroiddw1 
+an

11(1 + AAy Yl1 2 > 2 E X , (4.23)

II (A + A- A)yll 2 > C2 1lA0yll 2 , y c E(A (4.24)

This can again be done with the aid of the spectral representation for A which,

being self-adjoint and positive, can be written as

A p f0 i dE(p),
0

where E(p) is the spectral family for A . Then
11 ( + AA )yII - 2' 1i + AU al E

0

Since P-1 > 0 pj Y (tant6 + Z ) and
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Ii + X14 > cos2 (tan' l(6)) = 1

1+

Then

11 ( + AA-%)yI2 > f () EIE(1)yll 2 =- 1 y12- 0 1 ++ 20 2

and we can take c 2 in (4.23). In the case of (4.24) similar considerations

lead to examination of the ratio

+ -P2= 11i X-'212

2 + 0 2

because A0E (tan1
-t + ). Thus (4.24) is satisfied also with C^

2 2 + 21 + 2

Since R(AI + A 1) X , (4.22) shows that A P(A,A,B)- A is uniformly bounded

for X E J(tan'l + -1. Since this sector is invariant under conjugation, we conclude

A2P(X,A,B) X = [XP(A,A,B)- A ] * is uniformly bounded for A c L(tan-l + ) andT2

then XP(A,A,B) 1 A2 is uniformly bounded in that sector.

At this point we have established the uniform boundedness of the three operators

(4.7) in l(tan-1  + - ). From our earlier observations we conclude that £
2 B

generates a holomorphic semigroup if our conditions are satisfied, completing the

proof of the theorem.

Corollary 4.1 Let CiC 2 be two compact operators on X . Let B satisfy the

assumptions of Theorem 3.1 or 4.1 so that £ generates a holomorphic semigroup.
B

Then the operator

-A -B+CA 2+A C2 3
also generates a holomorphic semigroup.

Proof From a result in [10], the operator

c 1 1 -A 11 -B -A% -2C1 -

generates a holomorphic semigroup. By the same theorem,

-A CA -B { 0 I -A2  -B+C1A 2+A 2C2

also generates a holomorphic semigroup.
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Examples: Let X = 2(0,£) and
4 4

A = - with D(A) = {w E H (0,k) jw(0) = w{£) = w"(0) = w"() = 1
dx

4

Let B be defined by
d dw]

Bw = - -1 [(p + kb (x)) - + kb2(x)w P, > 0dx 1 1 d 2 '

where bl,b 2  are sufficiently smooth functions on [0,Z] and k > 0 , with

D(B) = {w E H 2(0,Z)Iw(O) = w() 0}.

Then B is positive, self-adjoint and satisfies

2 2 2plA <B <P 2 A

for some p2 > "l

If bI(x) and b 2(x) are not identically zero then A and B do not commute

in general. We have, for w E D(A3/2),

- = + kb rw+ P+kb (x))-w- k
CA Aw=dx 4 x ' dx 2 (X)~s} 1 dx dw

ddx

dw dw (3) dw (4)(dw1. b(x) (1- b (x) 4b (x)) -r- (5bo functonso
1 x dx dx 2 dx

(5) (3) dw
(b (x ) - 4b (x,)
1 2 dx

60

Since 632 _J from interpolation one easily sees that the commutator condition

dx(5) (3)
(4.6) is satisfied provided that b (x) and b (x) are continuous functions on

1 2

[0,21 and that k is appropriate.

For any w X , define C ,C :X X by

(C iw)(x) c c.(x,&)w(&)d& i =1,2

where the kernels c 1(x,E), C 2 (x,&) are Hilbert-Schmidt, and

2I
- c2 (x, ) is continuous in x for almost all E [0,].ax 
2 2

By Corollary 4.1, we know that

0 A

iA -B+C A+AC 2

generates a holomorphic semigroup. 0
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